
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 9:Chapter 9:

InheritanceInheritance

Programming with Alice and JavaProgramming with Alice and Java

First EditionFirst Edition

by by 

John Lewis John Lewis 

and and 

Peter DePasqualePeter DePasquale

1-2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 9-2

Objectives

• Derive new classes from existing ones.

• Explore the design of class hierarchies.

• Learn the concept and purpose of method overriding.

• Use abstract classes to enhance program design.

• Explore the protected visibility modifier.

• Examine polymorphism and its benefits.

• Explore processing threads and their creation.

1-3

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Parent and Child Classes

• Inheritance is the process of deriving a new class from an 

existing one.

• It is one of the main characteristics of object-oriented 

programming.

• The derived class automatically contains the variables 

and methods of the original class.

• One purpose of inheritance is to reuse existing software.

• The original class that is used to derive a new one is 

called the parent class, superclass, or base class.

• The derived class is called a child class, or subclass.

9-3

1-4

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Subclasses

• The process of inheritance should establish an is-a 

relationship between the parent and child classes.

• Example:       public class Dictionary extends Book

{

// contents of Dictionary

}

• extends clause causes the Dictionary class 

to automatically inherit the definitions of 

methods and variables declared in the Book

class.

• Although the Book class is needed to create the definition of 

Dictionary, a Book object is not needed in order to create a 

Dictionary object.

9-4

Book

Dictionary

1-5

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The protected Modifier

• Visibility modifiers are used to control access to the 

members of a class, and it is also important in the 

process of inheritance.

• Any public method or variable in the parent class can be 

explicitly referenced by name in the child class.

• Private methods and variables of the parent class cannot 

be referenced in the child class.

• A third visibility modifier: protected.

• Protected visibility  allows the class to retain some 

encapsulation properties.

9-5

1-6

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The super Reference

• Constructors are not inherited.

• super reference is used to invoke a parent’s constructor.

• Example: Constructor of Dictionary contained the 

following call: super( );

This call explicitly calls the Book constructor.

• The child’s constructor is responsible for calling its 

parent’s constructor.

• If the constructor accepts parameters, they can be 

passed in the super call.

• The super reference also can be used to reference other 

variables and methods defined in the parent’s class.

9-6



1-7

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Method Overriding

• A child class can override (redefine) the parent’s 

definition of an inherited method.

• A method can be defined with a final modifier.

• A child class cannot override the final method.

• Method overriding is a key element in object-oriented 

design.

• Two objects related by inheritance can use the same 

naming conventions for methods that accomplish the 

same general task in different ways.

9-7

1-8

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Class Hierarchies

9-8

Animal

Bird Mammal

Horse

Bat

ParrotSnake

Lizard

Reptile

FlyingAnimal

Bat MosquitoParrot

• The child of one class can be the parent of one or more other classes,

creating a class hierarchy.

• Multiple classes can be derived from a single parent.

• Two children of the same class are called siblings, but siblings are

not related by inheritance.

• Common features should be located as high in a class hierarchy

as is reasonably possible.

• The inheritance mechanism is transitive.

• There is no single best hierarchy for all situations.

1-9

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Object Class

• All classes in Java are derived, directly or indirectly from 

the Object class.

• All public methods of Object are inherited by every Java 

class.

• The Object class is defined in the java.lang package of 

the Java standard class library.

• Some methods of the Object class:

9-9

1-10

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Abstract Classes

• An abstract class represents a generic concept in the class hierarchy.

• An abstract class cannot be instantiated.

• Other classes can build their definitions based on the abstract class 

concept.

• An abstract class usually contains abstract methods, which have no 

definitions.

• A class is declared as abstract by including the abstract modifier in 

the class header.

• The Vehicle class may be implemented

as an abstract class.

• A class derived from an abstract

parent must override all of its parent’s abstract methods, or the 

derived class will also be considered abstract.

9-10

Vehicle

Boat PlaneCar

1-11

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

An Example: ShapeMaker

• Program allows the user to draw various shapes, filled 

or unfilled, using the mouse

9-11

Shape

BoundedShapeLine

Rectangle Oval

Square Circle

A screen shot of the 

program

A hierarchy of shape classes

1-12

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Abstract class Shape and Non 

Abstract class Line

9-12

Contains only a data value 

to store the shape’s color, 

and an abstract method for 

drawing a shape.

The draw method must be 

implemented by all of the 

non-abstract descendants 

of the Shape class



1-13

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Polymorphism

• Polymorphism can be defined as “having many forms”.

• A polymorphic reference is a reference variable that can 

refer to different types of objects at different points of 

time.

• obj.DoIt( );

If the reference obj is polymorphic, it can refer to different 

types of objects, so that line of code can call a different 

version of the DoIt method each time it is invoked.

• The binding of a method invocation to its definition is 

performed at run time for a polymorphic reference. 

• It is called late binding or dynamic binding.

9-13

1-14

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Polymorphism via Inheritance

• A reference variable can refer to any object created from 

any class related to it by inheritance.

• The type of object, not the type of the reference, 

determines which version of a method is invoked.

• Example:

Mammal pet;

Horse secretariat = new Horse( );

pet = secretariat;

• If the Mammal class were derived from a class called 

Animal, then the following is valid:

Animal creature = new Horse( );

creature.move( );

9-14

1-15

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Threads

• In Java, concurrency is accomplished using multiple 

execution threads.

• Class can be defined so that it runs its own thread.

• Multiple threads of execution can be running at the same 

time.

• A thread can be created using inheritance. Thread class 

is part of the java.lang package.

• If the Thread class is a parent of a new class,

the child class is a thread.

9-15

Thread

MyThread

1-16

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summary

• Inheritance is the process of deriving a new class from an existing one.

• Inheritance creates an “is-a” relationship between the parent and child classes.

• Protected visibility provides the best possible encapsulation that permits inheritance.

• A parent’s constructor can be invoked using the super reference.

• A child class can override (redefine) the parent’s definition of an inherited method.

• A child class can be a parent of other classes, creating a class hierarchy.

• All Java classes are derived, directly or indirectly, from the Object class.

• An abstract class cannot be instantiated. It represents a concept on which other classes 

can build their definitions.

• A polymorphic reference can refer to different types of objects over time.

• The binding of a method invocation to its definition is performed at run time for a 

polymorphic reference.

• A reference variable can refer to any object created from any class related to it by 

inheritance.

• The type of the object, not the type of reference, determines which version of a method is 

invoked.

• A thread can be created using inheritance.

9-16


