6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 1

CHAPTER

er objects) and

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 2 $

2 CHAPTER 1 Objects

Q’l/ Introduction

There was a time when the people who knew how to program a computer lived in
a world of their own—a complex world full of arcane symbols and mathematical
terms. It was the world of the geek and the nerd. Not anymore.

Computers are technical devices, certainly, but that doesn’t mean

» Programming a computer no
longer has to be a complex,

arcane experience.

that we have to be overwhelmed by their complexity. Almost every-
one can use a computer these days because most programs are
designed to be truly usable—much of the inherent complexity is
managed for us. In a similar way, the techniques for programming a

computer have become more accessible as well.

For you, this may be a one-time exploration into computing. Or you may have
your sights set on continuing in this field. Either way, you’re in the right place.
Computing is one of the world’s fastest growing disciplines, and the demand for
good programmers is rising. But even if you’re not looking for a career, the con-
cepts we’ll explore here are helpful in many other ways.

In this book we focus on object-oriented programming (OOP), which is the most
popular approach to computer programming today. It has gained dominance be-
cause it is a natural, intuitive way to think about problems and their solutions.

OOP is largely responsible for taking the world of programming

» In object-oriented

programming, we create the
objects we need and tell them to

perform services for us.

away from the geeks and making it more accessible.

As the name implies, object-oriented programming is all about man-
aging objects. An object can be anything—a character in an anima-
tion, a scoreboard in a game, a list of friends, whatever. In OOP,
we create the objects we need and then we tell those objects to do

things for us.

Two technologies that make use of an object-oriented approach are Alice and
Java, the cornerstones of this book.

Alice and Java

In the first five chapters of this book, we focus on Alice, an environment designed
to introduce programming concepts in an engaging manner. In the remaining
chapters we focus on Java, a popular programming language in use by profession-
als today. Alice will help us lay the foundation, and Java will give us the freedom
to explore many other possibilities.

Alice is a computer environment in which you create virtual worlds containing
three-dimensional characters and objects that move and interact. Figure 1.1 shows

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 3 $

1.1 Introduction

a screen shot from an Alice virtual world. Alice was developed at Carnegie Mellon
University and is named in honor of Lewis Carroll and his wonderful books Alice
in Wonderland and Through the Looking Glass.

“Figure 11

An Alice virtual world

You can use Alice to create animations in which characters play out a scene or to
create games and other interactive worlds in which objects respond to mouse
clicks and keyboard input. When you create an Alice world, you are the boss. You
decide which objects to include in your world and how they will behave. With
Alice, you’re part movie director and part choreographer. You provide the instruc-
tions, like move forward and turn right, and the objects in your world carry out
those instructions.

3

Though it won’t feel like it, when you build a virtual world in Alice
and dictate the way it behaves, you are programming. After all,
that’s what object-oriented programming is all about—telling

» Both Alice and Java use
an object-oriented approach.

objects what to do.

Once Alice paves the way, we’ll transition into developing programs in Java,
which is a general-purpose programming language. Java can be used to create ani-
mations and games, as we can in Alice, but it is far more versatile. You wouldn’t
use Alice to create a social network or help manage a student organization, but
you could with Java.

Java was created by James Gosling at Sun Microsystems. It’s become one of the
most popular programming languages in use today.

One of the ways we’ll explore the capabilities of Java is by examining a program
called Thunklt, a game in which the user helps stranded students get back to their
school by solving a variety of puzzles. In each level of the game a student moves
obstacles and uses various gadgets to outwit the detention robots and get one step
closer to school. A screen shot of Thunklt is shown in Figure 1.2.

o

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 4 $

4 CHAPTER 1 Objects

Figure 1.2

Thunklt, a Java program

Not only will we examine the code that makes the objects in ThunkIt do what
they do, but you’ll create game objects of your own and then design levels of the
game that use them. More on that later.

Our goal in this book is not to teach Alice or Java per se, but rather to use them to
teach fundamental programming concepts. These concepts apply not only to Alice
and Java, but also to many other popular programming languages.

No matter which programming language you use, you need a development envi-
ronment in which to create and execute your programs. Let’s take a look at the
Alice development environment.

sz The Alice Environment

Alice animations are made and executed within the Alice integrated development
environment (IDE). Versions of Alice are available for both Windows and Mac
OS, and can be downloaded for free from the Alice website (www.
alice.org). Appendix A contains information about installing the
» A development environment Alice environment.

is a program used to create and
run another program.

As shown in Figure 1.3, when you start the Alice environment, it
presents a window that allows you to specify what you want to do
initially. Depending on which tab you pick, you can choose to:

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 5 $

1.2 The Alice Environment

e run a tutorial,

e open a world you’ve had open recently (if any),
e start a new world using an existing template,

e explore one of several example worlds, or

e open an Alice world that was previously stored on your computer.

5

igure 1.
: v - L Figure 13
ice The Alice welcome
Recent Wor emplates world) screen
Templates
dirt grass sand
snow space water
[v] Show this dialog at start
The tutorials are a good place to start, and we encourage you to use)
them to get acquainted with the Alice environment and its capabili- > Programming is a
ties. Likewise, feel free to open and explore the various example participation sport! The more

you play, the better you’ll get.

worlds provided. Play around with them. Have fun. Don’t worry if
Explore and experiment!

you don’t understand everything you see in the tutorials and exam-

ples—we cover the key topics carefully in this book. Just don’t be
afraid to explore and experiment.

The primary Alice window contains several distinct areas, as shown in Figure 1.4.
The toolbar includes a button to play the current animation, which brings up a
separate window in which the animation is displayed and controlled. The world
view shows the virtual world as it initially appears to the camera, and has controls
for adjusting the camera’s initial point of view. The object tree lists all objects in
the world, allowing you to select a particular object as you develop an animation.

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:45 PM Page 6 $

6 CHAPTER 1 Objects

The details panel provides information about the particular object currently se-
lected in the object tree. The method editor is where you make changes to the code
that dictates what your animation does. Finally, the events editor is where you
specify what will happen when particular events occur.

Figure 1.4

The Alice development

. (&) Alice (2.0 04/05/2005) -
environment Fle gt Tools oy | /
=2 il

@ worla Events |create new event I
pES camera

: Q;]mm ~ When the world starts, do ~ world.my first method

: Bumund

toolbar world view events editor

object
tree

@ world.my first method

world's details world.my first method No parameters

(Do Nothing

“myfirst method
create new method

details
panel

“Doinorder ‘Dotogether 'IfiElse ‘Loop While | Forallinorder For alltogether “Wait - print 1

method editor

We’ll explore all of these aspects of the Alice environment over time as appropri-
ate. For now, just begin to get a feel for the layout of the environment.

Appendix A contains the details of using the Alice environment to accomplish
particular tasks. Use it as needed as you progress through the chapters.

@ Objects in Alice

Let’s start by exploring a simple Alice world called spinningCubes (stored in the
file SpinningCubes.a2w). This world contains two cubes, one red and one blue, as
shown in Figure 1.5. When you play the animation, first the blue cube spins in one
direction, then the red cube spins in the opposite direction. Try it! We encourage
you to keep the Alice environment open while you’re reading this book, experi-
menting with our sample worlds as you go along.

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 7 $

1.3 Objects in Alice 7

“Figure 15

The SpinningCubes
world

The two cubes in this animation are objects, as is everything in an Alice world.
The objects contained in an Alice world are listed in the object tree, as shown in
Figure 1.6. The spinningCubes world contains objects that represent the camera,
the light source, the ground, and the two cubes.

gjs@gld The object tree for the
(i camera SpinningCubes world

(: Q} light

] Q ground
: Q cube
@@ cube2

All Alice worlds have a camera and a light source. The camera represents the point
of view of the person watching the animation. Most worlds also have some kind
of ground surface as well. The templates in the Alice welcome screen provide sev-
eral basic ground surfaces from which to choose. The spinningcubes world
makes use of a ground surface covered in grass.

The camera’s initial point of view of the world can be set using the camera controls,
shown in Figure 1.7 and located under the world view window in the Alice envi-
ronment. The camera controls may take some getting used to. The first control
shifts the camera up, down, right, or left. The second control moves the camera for-
ward or backward in the world, or rotates the camera right or left. The third con-
trol pivots the camera’s view up or down. Experiment with the controls to get a feel
for how they can be used to get a particular point of view on the world.

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:45 PM Page 8 $

8 CHAPTER 1 Objects

Figure 1.7
The camera controls 4%. ‘$n; n

Once you use the camera controls to set the initial point of view, the camera will
keep that orientation throughout the animation unless you dictate otherwise. As
we’ll see in later examples, we can set it up so that the camera’s orientation
changes as the animation unfolds.

TRY THIS!

1. Using the camera controls, change the camera viewpoint in SpinningCubes
so that the blue cube is in the foreground and the red cube is behind it in the
background.

2. Change the camera viewpoint in SpinningCubes so that it looks down on
the cubes from above.

Calling Methods

A method is a set of statements that can be called (or invoked) whenever we want
those statements to be executed. Every object has methods that define that object’s
potential behavior. For example, most Alice objects have a method
called turn that, when called, will rotate the object. Similarly, the
move method will move an object in a particular direction when it is

» We get an object to do
something by calling one of its

methods. called.

The world object in every Alice animation has a method called
my first method that is executed whenever the animation is played.
This method often calls methods in other objects. The my first method method

for spinningCubes is shown in Figure 1.8.
fgure 1. (@ woraim st I
world.my first method No parameters
Themy first Novarities

methOd methOd for the /i SpinningCubes.a2w

SpinningCubes world

Wait 0.5 seconds
cube turn left — 2 revolutions more...
Wait 0.5 seconds

cube2 turn right 2 revolutions more...

In this example, the first line in my first method is a comment, in green type and
beginning with two slash marks (//). Comments are included for the human
reader and do not have any effect on the animation. We typically include a com-
ment at the beginning of my first method to indicate the file name of the world.

o

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:45 PM Page 9 $

1.3 Objects in Alice 9

The SpinningCubes animation makes use of the wait statement, which is used to
pause the animation for a particular period of time. In most of our examples we
pause at the beginning of the animation just to let the human viewer see the initial
state of the world before any action begins. In this example we also use a second
Wait statement to pause in between the spinning of the two cubes. The wait state-
ment is one of several control statements listed below the method editor, as shown
in Figure 1.9. We explore the rest of these statements at appropriate points in the
next few chapters.

Figure 1.9

The control statements
list

Doinorder Dotogether “IfiElse Loop While “For allinorder -For alltogether Wait print i

To make the cubes spin, we call the turn method of each cube. In object-oriented
terms, we say we are sending a message to an object to request that it perform
a particular service for us. In the SpinningCubes example, we initially ask cube
to turn. Then, after a brief pause, we ask cube2 to turn. Figure 1.10 shows the
elements of a method call.

L Figure 110")
Calling a method of

~ cube turn left 2 revolutions more... an ObjeCt

object 1 parameters

method

Methods can accept parameters, which provide additional information

to the method. When the turn method is called, we use parameters to > A method’s parameters
indicate which direction to turn and how many revolutions to turn. provide additional information
These values can be changed using the drop-down menus in the state- that tailors its behavior.
ment. The menu labeled more. . . lets you access additional parameters,
such as the statement’s duration (how long it takes to execute the turn).

TRY THIS!
3. Modify SpinningCubes so that the pause between the cubes spinning is
one second.

4. Modify SpinningCubes so that both cubes turn to the right and cube2
turns only one revolution.

5. Modify SpinningCubes so that cube completes its turn in half a second
and cube2 completes its turn in three seconds.

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:45 PM Page 10 $

10 CHAPTER 1 Objects

To add a control statement (such as Wait) to a method, simply drag it up from the list
into the method editor. Comments can also be added in this way. As you drag, a green
line appears to indicate where you are adding the new statement. Depending on the
statement, it may prompt you to set certain parameter values when you add it to the
method. Consult Appendix A if needed for help with these environment operations.

The available methods for an object are listed in the details panel when that object
is selected in the object tree. Figure 1.11 shows part of the methods tab of the
details panel for one of the cube objects. To add a new call to a method, drag the
method name from the details panel to the method editor.

cube’s details

Some of the methods (e methods
available for cube

cube move
cube turn
cube roll

cube resize

cube say
cube think

cube play sound

cube moveto

cube move toward
cube move awayfrom
cube orientto

cube turntoface

The built-in methods for a cube object will be found in almost all

> All Alice objects have a set of other Alice objects as well. They provide several basic movement op-
built-in methods that we can erations, including some that move relative to other objects or at a
use. We can also add our own. particular speed. The built-in methods also include say and think,

TRY THIS!

which produce speech bubbles above the object, as in a comic strip.
Another method, play sound, allows an object to play a sound file.
A few sound effects are built into the Alice environment, but you can import any
.wav or .mp3 sound file to use in your animation.

The full list of built-in methods are described in Appendix B. Feel free to experi-
ment with these methods—we’ll see many of them in use in upcoming examples.
You’ll learn how to add your own methods to an object in Chapter 2.

6. Make additional calls to the turn method in SpinningCubes so that each
cube spins in both directions, first right then left.

7. Modify SpinningCubes so that the cubes float up into the air 1 meter after
they spin.

8. Modify SpinningCubes so that cube makes a “pop” sound after it spins
and cube2 makes a “thud” sound after it spins.

o

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 11 $

1.3 Objects in Alice 11

In Alice, special methods called functions are used to retrieve key information
about an object, such as how close it is to another object. The available functions
for an object are listed in a separate tab of the details panel. We’ll make use of
functions in later examples as well.

Properties

In addition to methods, which represent an object’s potential behav-

iors, an object also has properties, which describe its state of being > An object’s properties

at any point in time. For example, the color of an Alice object is describe its current state, such

one of its properties. In the SpinningCubes world, cube is blue and as its color and opacity.

cube? is red. The values of properties can be changed as needed.

The properties of an object are listed in another tab in the details panel. Some
standard properties are opacity (how much you can see through an object) and
fillingsStyle (whether an object is solid or represented as a wire frame).

The value of a property can be changed directly in the details panel using the cor-
responding drop-down menu. This sets the initial state of the object. A property
value can also be changed during an animation using a method call. To change a
property value using a method call, drag the property from the details panel into
the method editor. This adds a call to a set method for that property.

Some object properties are not shown in the properties tab. For instance, an
object’s position within the world is a property of that object, but position doesn’t
show up in the properties list. Instead, Alice provides various methods (move,
turn, roll, etc.) that change the object’s position in a smooth, animated manner.
The size of an object is another hidden property that can be changed using the
resize method.

TRY THIS!
9. In SpinningCubes, use the properties drop-down menu for £illingStyle
to show cube as a wire frame. \
10. Modify SpinningCubes so that the color of cube2 changes to yellow after
both cubes finish turning. /

11. Modify SpinningCubes so that the size of cube shrinks by half after it
turns and the size of cube2 doubles after it turns.

The techniques for setting the initial position and size of an object are discussed in
the next section.

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 12 $

12 CHAPTER 1 Objects

@ Alice Classes

™) An object is created from a class, which serves as the blueprint, or
» An object is created from a pattern, from which all similar objects are created. For example, the
class. In Alice, classes are two cube objects in the spinningCubes world were created from a

organized into galleries.

class called cube. The class of an object determines the methods and

Figure 112

Accessing the class
galleries and the object
positioning controls

properties the object will have.

The classes we use to create Alice animations are organized into galleries. The Alice
environment has several local (built-in) galleries, and you can access several more gal-
leries through the Web. The local galleries are generally a subset of those you can find
on the Web. There may be a delay in accessing the web galleries depending on your
network connection. We use classes from both sets of galleries in this book.

Pressing the Add Objects button, found next to the camera controls under the world
view window, produces a window such as the one in Figure 1.12. The available class
galleries are displayed along the bottom. (Local galleries are displayed by default.)

@® single view () quad view
IS ey 2 < 2]

[] affect subparts

Home > Local Gallery fmy Search Gallery

Clicking a gallery will display the classes available in that gallery. For example,
clicking the Beach gallery provides access to the BeachChair and Lighthouse classes,
among others. The cube class used in the spinningCubes world is found in the
Shapes gallery. Take some time to become familiar with the various classes avail-
able in the galleries.

o

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:40 PM Page 13 $

1.5 Do Together and Do In Order 13

To add an object to an Alice world, drag the appropriate class into the world view
window. Once added, you can use the controls on the right side to position, orient,
resize, and copy the object as you see fit. When you’re finished adding and posi-
tioning objects, press the Done button. Remember that Appendix A contains addi-
tional details about using the various environment controls.

TRY THIS!
12. Add a third cube to the SpinningCubes world and adjust the camera’s ‘
viewpoint so you can see all three cubes. Adjust the new cube’s size and
orientation to be roughly equal to the others. Set its color to magenta in the
properties tab of the details panel. Modify my first method so that the
new cube spins similar to the others.

13. Add an Anvil object from the Objects gallery to the SpinningCubes world
so that it looks like it’s sitting on the red cube. Add a StopSign object from
the Roads and Signs gallery between the cubes.

@ Do Together and Do In Order

Unless we indicate otherwise, the statements in a method are executed in order,
one after the other. In animations, however, we often want two or more things to
happen at the same time. The Alice control statements (listed below the method
editor) include a statement called bo together that allows us to do two or more
things simultaneously. A Do together statement contains other statements, indi-
cating that those statements should all be executed at the same time.

Let’s look at an example. The Blimps world contains two blimps floating in the
sky, as shown in Figure 1.13. The blimps were created using the B1imp class found
in the Vehicles gallery. When the animation is played, both blimps move through
the sky at the same time in different directions.

Figure 1.13

The Blimps world

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:46 PM Page 14 $

14 CHAPTER 1

Figure 1.14

Using the Do
together statement

| Figure 115

The Bugs world

Objects

The my first method method for Blimps is shown in Figure 1.14. It uses a Do
together statement, which contains two statements that move the two blimps. If
those two statements were not contained in a Do together statement, one blimp
would move, and when it was finished, the other blimp would move. By putting
both statements in the Do together statement, the blimps move at the same time.
Note that in this example the blimps are controlled using the move at speed
method, which allows us to define how fast an object moves.

world.my first method Vo parameters

No variables

Wait 0.5 seconds
=] Do together
“blimp — move at speed forward — speed =10 meters per second — dwration =10 seconds — more...

- blimp2 move at speed forward speed =10 meters per second duration =10 seconds more...

The Do in order statement is essentially the opposite of the Do together state-
ment. It forces the statements it contains to be executed in order, one after another.
The Do in order statement is needed when you want to perform some statements
sequentially within a Do together statement.

In an example world called Bugs, two bugs are shown scurrying around the
ground near a tree, as depicted in Figure 1.15. The bug objects are created from
the Ladybug class in the Animals gallery and the tree is created from the
HappyTree class in the Nature gallery.

The movement of the bugs is accomplished using various calls to their move and
turn methods. We want both bugs to move at the same time, but we want each
step for a bug (move, then turn, then move, etc.) to be executed in order. The
method that accomplishes this coordinated movement is shown in Figure 1.16.

o

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:46 PM Page 15 $

1.6 Composite Objects 15

@ world.my first method igufe | IE

world.my first method No parameters
No variables Using the Do in
= order statement
Wait 0.5 seconds

/Do together
: [=IDo in order
B ladybug move forward 3 meters duration =2 seconds more...

ladybug turn right 0.125 revolutions more...
ladybug move forward 3 meters more...
ladybug turn left 0.5 revolutions more...
ladybug move forward 5 meters duration =2 seconds more...
:vE Do in order
ladybug2 move forward 0.5 meters duration =0.5 seconds more...
: ladybug2 turn left 0.125 revolutions more...
ladybug2 move forward 2 meters more...
ladybug2 turn left 0.25 revolutions more...
b ladybug2 move forward 2 meters more...
- ladybug2 turn left 0.25 revolutions more...

ladybug2 move forward 2 meters more...

The two Do in order statements are executed at the same time, one controlling
the movement of one bug and the other controlling the movement of the other
bug. Within each Do in order statement, the individual movements of a bug are
executed sequentially.

By using a thoughtful combination of Do together and Do in order statements,
it’s possible to create interesting animation effects.

TRY THIS!

14. Modify spinningCubes so that both cubes spin at the same time.

15. Add a third blimp to the B1imps world that moves half as fast as the
others.

16. Add a third Ladybug object to the Bugs world that moves in its own pattern.

@ Composite Objects

A composite object is an object that contains other objects. Many objects in the
Alice galleries are composite objects. Let’s look at an example. The surferwave
world shows a surfer on the beach, as shown in Figure 1.17. When the animation
is played, the surfer turns his head (as if noticing the viewer), turns his upper body
to face the viewer, and then waves his hand.

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:46 PM Page 16 $

16 CHAPTER 1 Objects

Figure 1.17

The SurferWave world

The surfer was created from the RandomGuy2 class in the People gallery. We modi-
fied the object’s name from the default (randomGuy2) to something more appro-

priate for this example (surfer) in the object tree. The beach chair
- was created from the BeachChair class in the Beach gallery.

A composit.e object is made The surfer is a composite object. It is made up of the left leg, the
z(‘:n::otl’tthheer:v:fl th.bﬁitc::any right leg, and the upper body objects. Each of these parts is itself
EEparts. a composite object. The upper body, for instance, is made up of

the left arm, the right arm, and the head. The arms and legs can be
further decomposed.

A composite object has a plus sign next to it in the object tree. Clicking the plus
sign expands the tree and displays its component objects, as shown in Figure 1.18.
When expanded, the plus sign changes to a minus sign. When the minus sign is
clicked, that section of the tree is hidden again.

Figure 1.18
;?Dwnrld

Viewing the parts of the p$® camera
surfer composite Qitont
object @ ground

:: B beachChair
5 QI

= [Qettteg

=} Ef:lbknee

=) ;; lbluwerLeg
 [D oot

‘:%rightLeg
‘:%upperﬂuw

6184 LEWI_CHOl p001-024.gxd 2/18/08 3:46 PM Page 17 $

1.6 Composite Objects

The Ladybug objects from the Bugs world in the previous section are also com-
posite objects. Each leg of a bug can be moved independently, as can the wings and
even the antennae. In the Bugs world example, we simply moved the entire bug,
but composite objects give you the ability to refine the animations to the level you
choose.

You can send messages to (that is, call methods of) an entire object or to any com-
ponent part. When referring to a component part, you access it through its con-
taining object. In this example, the entire object is referred to as surfer. The
entire upper body of the surfer is referred to as surfer.upperBody. The head of
the surfer is referred to as surfer.upperBody.head. Figure 1.19 shows the code
for the surferwave world.

world.my first method Vo parameters

No variables

 Wait 0.5 seconds

: surfer.upperBody.head turntoface camera duration =0.5 seconds more...

/Do together
surfer.upperBody turnto face camera duration =0.5 seconds more...
surfer.upperBody.head — turntoface camera — duration =0.5 seconds — more...
[~ Do together
surfer.upperBody.rightArm roll left 0.2 revolutions more...
surfer.upperBody.rightArm.elbow.forearm roll left 0.25 revolutions more...
surfer.upperBody.rightArm.elbow.forearm.hand ~ turn right — 0.25 revolutions -~ more...
surfer.upperBody.rightArm.elbow.forearm — roll left =~ 0.12 revolutions — duration =0.5 seconds — more...
: surfer.upperBody.rightArm.elbow.forearm roll right 0.25 revolutions duration =0.5 seconds more...
: surfer.upperBody.rightArm.elbow.forearm roll left 0.25 revolutions duration =0.5 seconds more...

The turn to face method is used to turn the surfer’s head toward the camera
initially. The first Do together statement then turns the entire upper body toward
the camera, and again turns the head. If the second head turn were not performed,
the head would “ride” the upper body and turn to face away from the viewer.

The second Do together statement swings the arm up in preparation for the
wave. To do this, it simultaneously rolls the right arm, rolls the right forearm, and
turns the hand. The wave itself is accomplished with three rolls of the forearm.

17. Modify SurferWave so that the surfer says “Welcome to my world!” while
he’s waving.

18. Modify surferWave so that the surfer’'s arm returns to its original position
after finishing the wave.

19. Modify surferwave so that the surfer moves his left hand to his hip during
the wave.

17

lgure 119

Manipulating the parts
of a composite object

TRY THIS!

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:41 PM Page 18 $

18

CHAPTER 1

Objects

The composite objects in the Alice galleries vary in the way they are made up.
Some can be articulated down to individual fingers and others are less versatile.

Unfortunately, it is not easy to add a new class to Alice. Therefore, you can’t really
make your own types of objects. The process of creating a composite object is par-
ticularly tricky. It involves using additional 3D graphics software to create the
pieces of the object and to define their relationships to each other, pivot points,
and other details. This process is beyond the scope of this book. There is, however,
a tool provided with Alice to make somewhat customized characters. We discuss
that tool in the next section. In the examples in this book we constrain ourselves
to using the predefined classes provided in the galleries.

(S@% DI Wore to Explore])

As discussed in section 1.1, the content of this book focuses on the core ideas
related to object-oriented programming. We’ve already introduced several in this
chapter: objects, classes, methods, properties, and composite objects.

To help complete the picture, each chapter in this book ends with a section called
More to Explore, in which we briefly discuss topics that you may want to look
into. These issues are usually environment or language details that don’t play a
role in the big picture, but will help you as you develop your programs. For Alice,
Appendices A and B contain further details for many of these topics.

Built-In Methods Make sure you explore the methods that are part of (almost)
every Alice object by default. We’ve discussed a few of them in this chapter and
will continue to use them as needed. Some of them have subtle but important dis-
tinctions, such as the difference between the move and move at speed methods.
Appendix B contains a summary of all the built-in Alice methods.

Turn vs. Roll In a three-dimensional world, an object’s orientation (the way it’s
facing) can be changed without changing its position. Each object has a particular
pivot point around which it rotates. You can change an object’s orientation by
turning it right or left, turning it forward or backward (think of leaning forward
or backward), or rolling it left or right (think of leaning to one side). See Figure 1.20.
Keep in mind that directions are relative to an object’s orientation—so
changing position and orientation at the same time can cause some interesting
results. For even more control, experiment with the asSeenBy parameter when
making complicated movements. Like anything else, the more you experiment
with the various combinations of methods and directions, the more familiar
they will become.

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:41 PM Page 19 $

1.7 More to Explore 19

| Figure 120 J

turn left turn right turn forward turn backward Changing an ObJECtyS

orientation in three
dimensions
'(roll right roll left \

He Builder / She Builder The ability to create completely new classes of objects
in Alice, using our own graphics, is not something we can tackle in this book. How-
ever, tools called He Builder and she Builder have been built into Alice to give
you some control over the look of the human characters you create. You can choose
skin and hair color, hair style, body type, and clothes. These tools are available at
the end of the list of classes in the People gallery. They bring up a separate window
to guide you through the character creation process, as shown in Figure 1.21.

ane

Click and drag to rotate your person

— [Figure 121)
» Character building

Name:]
Created By:| |

Capture Pose Getting a character to perform a particular movement (like the
surfer waving his hand) can involve a complex combination of movements. One
way to simplify this process is to maneuver a character into a particular pose using
the mouse tools, and then capture that pose to use later. Once you have the char-
acter in the pose you want, you can right click on it and choose the capture pose
menu option, or use the capture pose button on the properties tab. You can then
use the set pose method in an animation, which causes the character to smoothly
move into the specified pose. We use character poses in later examples to cut down
on the amount of code otherwise required.

o

6184 LEWI_CHOl p001-024.qxd 1/17/08 6:41 PM Page 20 $

20 CHAPTER 1 Objects

Summary of Key Concepts

e Programming a computer no longer has to be a complex, arcane experience.

e In object-oriented programming, we create the objects we need and tell them to
perform services for us.

e Both Alice and Java use an object-oriented approach.

e A development environment is a program used to create and run another
program.

e Programming is a participation sport! The more you play, the better you’ll get.
Explore and experiment!

e We get an object to do something by calling one of its methods.
e A method’s parameters provide additional information that tailors its behavior.

e All Alice objects have a set of built-in methods that we can use. We can also add
our own.

e An object’s properties describe its current state, such as its color and opacity.
e An object is created from a class. In Alice, classes are organized into galleries.

e A composite object is made up of other objects. We can control the whole object
or any of its parts.

EX 1.1 Describe the following terms: object, class, method, parameter, and
property.

EX1.2 What's the difference between the move and move at speed methods?
Compare the parameters and consult Appendix B as needed.

EX 1.3 What does it mean when we “send a message” to an object?

EX 1.4 Write a statement, as it would appear in an Alice program, that would cause
an object called dancer to spin around three times.

EX 1.5 Write a statement that would cause an object called tree to grow to three
times its current size.

EX 1.6 Write a statement that would cause an object called cheerleader to turn to
face the camera.

o

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:41 PM Page 21 $

EX 1.10

Programming Projects

How do you get two animation steps to happen at the same time in an Alice
program? Give an example.

Describe the composite structure of an object created from the Chicken
class in the Animals gallery.

Describe the composite structure of an object created from the Barn class
in the Farm gallery.

How do you access a particular part of a composite object? Give an example
using the Phonograph class in the Objects gallery.

Programming Projects

PP 1.1

PP 1.2

Create an Alice world in which a penguin waddles toward a hole in a frozen
lake, tips over, and falls in. The Penguin class can be found in the Animals
gallery and the FrozenLake class is in the Environments gallery. Use the
Circle class (colored gray) from the Shapes gallery to make the hole in the
ice. In addition to the standard built-in methods, the Penguin class comes
with a few other methods that you can call to help with this animation.

Create an Alice world that shows a combination lock being dialed and then
the latch opening. The combination is 15-35-5 (that is, turn right to 15, then
left to 35, and right again to 5). The CombinationLock class is in the
Objects gallery.

21

6184 LEWI_CHOl p001-024.qxd 1/17/08 6:41 PM Page 22 $

22

CHAPTER 1

Objects

PP 1.3 Create an Alice world that shows a graveyard scene in which a casket opens
and a mummy inside it sits up. Use the casket and Mummy classes from the
Spooky gallery, plus various others to set the mood.

PP 1.4 Using various classes from the Vehicles gallery, such as Biplane, Blimp,
Jet, and NavyJet, create an Alice world in which several flying vehicles are
moving through the air at different speeds, in different directions, and at
different altitudes.

PP 1.5 Using various classes from the Vehicles gallery, such as Motorboat,
Sailboat, and Shakira, create an Alice world in which several boats are
moving across the water at different speeds and in different directions. Have
one boat change direction at some point. Add a few colored Sphere objects
from the Shapes gallery, partially submerged in the water, to represent buoys.

PP 1.6 Create an Alice world in which a LunarLander object from the SciFi gallery
floats down gracefully to the moon’s surface. After landing, the lander’s door
opens while two AlienOnWheels objects approach to greet the visitors.

PP 1.7 Create an Alice world depicting a moment from a fight between a troll and a
wizard (created from classes in the Medieval gallery). As the troll swings his
club down to hit the wizard, the wizard points at the club and it goes flying

o

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:41 PM Page 23 $

PP 1.8

PP 1.9

Programming Projects

out of the troll’s hand. Then the wizard sinks magically into the ground and
disappears, saying “Farewell” as he goes.

Using various car and truck classes from the Vehicles gallery, such as car,
ConvertibleCorvette, DumpTruck, and Humvee, create an Alice world in
which vehicles are moving right or left across the screen, going in opposite
directions on a two-lane road. Use the Road class from the City gallery to
create the road. Stagger the timing of the vehicles, starting them when
needed and stopping them after they move out of the camera’s view.

Create an Alice world in which a chicken walks forward a few steps, pecks at
the ground twice, and then clucks. Move the chicken’s legs, neck, and head
appropriately. Open the chicken’s mouth while the clucking sound is played.
The Chicken class is in the Animals gallery.

PP 1.10 Create an Alice world in which a helicopter lifts off the ground, flies in a wide

circle, and lands. (An object can move in a circle by moving forward and
turning one full rotation simultaneously.) Of course, the helicopter’s
propellers should be rotating whenever the helicopter is in the air. The
Helicopter class can be found in the Vehicles gallery.

23

6184 LEWI_CHOl p001-024.gxd 1/17/08 6:41 PM Page 24 $

