

Outline and Reading

- ◆The Stack ADT (§2.1.1)
- Applications of Stacks (§2.1.1)
- Array-based implementation (§2.1.1)
- Growable array-based stack (§1.5)

Abstract Data Types (ADTs)

- An abstract data type (ADT) is an abstraction of a data structure
- An ADT specifies:
 - Data stored
 - Operations on the data
 - Error conditions associated with operations

- Example: ADT modeling a simple stock trading system
 - The data stored are buy/sell orders
 - The operations supported are
 - order buy(stock, shares, price)
 - order sell(stock, shares, price)
 - void cancel(order)
 - Error conditions:
 - Buy/sell a nonexistent stock
 - Cancel a nonexistent order

The Stack ADT

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

Exceptions

- Attempting the
 execution of an
 operation of ADT may
 sometimes cause an
 error condition, called
 an exception
- Exceptions are said to be "thrown" by an operation that cannot be executed
- In the Stack ADT, operations pop and top cannot be performed if the stack is empty
- Attempting the execution of pop or top on an empty stack throws an EmptyStackException

Applications of Stacks

- Direct applications
 - Page-visited history in a Web browser
 - Undo sequence in a text editor
 - Chain of method calls in the Java Virtual Machine
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Method Stack in the JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack
- When a method is called, the JVM pushes on the stack a frame containing
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack

```
main() {
  int i = 5;
  foo(i);
foo(int j) {
  int k;
  k = j+1;
  bar(k);
bar(int m) {
```

```
bar
PC = 1
m = 6
```

```
foo
PC = 3
j = 5
k = 6
```

```
main
PC = 2
i = 5
```

Array-based Stack

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable keeps track of the index of the top element

Algorithm size()return t+1

Algorithm pop()
if isEmpty() then
throw EmptyStackException
else

$$t \leftarrow t - 1$$

return $S[t + 1]$

Array-based Stack (cont.)

- The array storing the stack elements may become full
- A push operation will then throw a FullStackException
 - Limitation of the arraybased implementation
 - Not intrinsic to the Stack ADT

Algorithm push(o)if t = S.length - 1 then throw FullStackExceptionelse

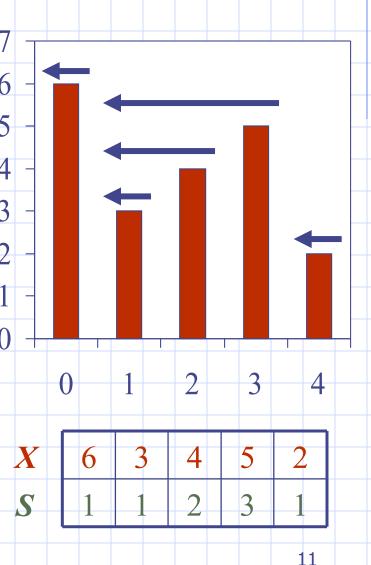
$$t \leftarrow t + 1$$
$$S[t] \leftarrow o$$

Performance and Limitations

- Performance
 - Let n be the number of elements in the stack
 - The space used is O(n)
 - Each operation runs in time O(1)
- Limitations
 - The maximum size of the stack must be defined a priori and cannot be changed
 - Trying to push a new element into a full stack causes an implementation-specific exception

Computing Spans

- We show how to use a stack as an auxiliary data structure in an algorithm
- Given an an array X, the span S[i] of X[i] is the maximum number of consecutive elements X[j] immediately preceding X[i] and such that $X[j] \le X[i]$
- Spans have applications to financial analysis
 - E.g., stock at 52-week high



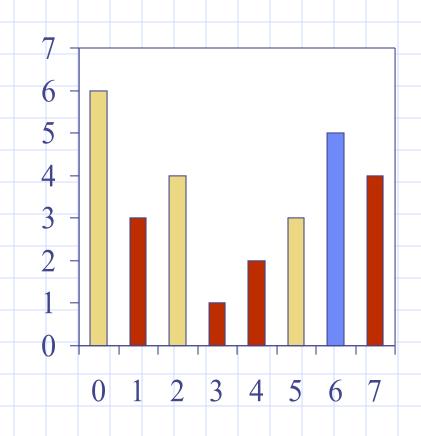
Quadratic Algorithm

```
Algorithm spans1(X, n)
   Input array X of n integers
   Output array S of spans of X
   S \leftarrow new array of n integers
   for i \leftarrow 0 to n-1 do
      s \leftarrow 1
                                            1 + 2 + \ldots + (n - 1)
      while s \le i \land X[i-s] \le X[i]
                                            1+2+...+(n-1)
         s \leftarrow s + 1
     S[i] \leftarrow s
   return S
```

 \bullet Algorithm *spans1* runs in $O(n^2)$ time

Computing Spans with a Stack

- We keep in a stack the indices of the elements visible when "looking back"
- We scan the array from left to right
 - Let i be the current index
 - We pop indices from the stack until we find index j such that X[i] < X[j]</p>
 - We set $S[i] \leftarrow i j$
 - We push x onto the stack



Linear Algorithm

- Each index of the array
 - Is pushed into the stack exactly one
 - Is popped from the stack at most once
- The statements in the while-loop are executed at most
 n times
- \bullet Algorithm *spans2* runs in O(n) time

Algo	orit	hm	sp	an	s2(<i>X</i> ,	n)				#
S	*	ne	w a	rra	ус	of n	in	iteg	ers	S	n
A	1 ←	- ne	w e	mp	oty	sta	ack	-			1
	for	<i>i</i> ←	- 0	to	n -	- 1	do)			n
	V	hil	e (-	7 <i>A</i>	.isl	Em	pty	2()	٨		
			X	[A.	top)()	<	X[i]		do	n
		A.j	op	()							n
	if	A.	sE.	mp	ty() t l	her	1			n
		S[i	$] \leftarrow$	- i	+ 1						n
	e	lse									
		S[i	\leftarrow	- i	— _/	1. <i>t</i> e	op()			n
	A	.pu	sh(i)							n
r	etu	rn ,	S								1

Growable Array-based Stack

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
- How large should the new array be?
 - incremental strategy:
 increase the size by a constant c
 - doubling strategy: double the size

```
Algorithm push(o)

if t = S.length - 1 then

A \leftarrow \text{new array of}

\text{size } \dots

\text{for } i \leftarrow 0 \text{ to } t \text{ do}

A[i] \leftarrow S[i]

S \leftarrow A

t \leftarrow t + 1

S[t] \leftarrow o
```

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n push operations
- We assume that we start with an empty stack represented by an array of size 1
- We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., T(n)/n

Incremental Strategy Analysis

- We replace the array k = n/c times
- The total time T(n) of a series of n push operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- The amortized time of a push operation is O(n)

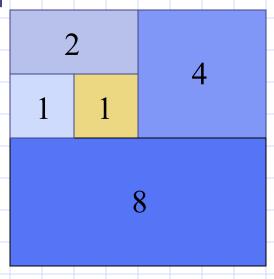
Doubling Strategy Analysis

- We replace the array $k = \log_2 n$ times
- The total time T(n) of a series of geometric series n push operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} =$$

 $n + 2^{k+1} - 1 = 2n - 1$

- T(n) is O(n)
- The amortized time of a push operation is O(1)



Stack Interface in Java

- Java interface corresponding to our Stack ADT
- Requires the definition of class EmptyStackException
- Different from the built-in Java class java.util.Stack

```
public interface Stack {
  public int size();
  public boolean isEmpty();
  public Object top()
      throws EmptyStackException;
  public void push(Object o);
  public Object pop()
      throws EmptyStackException;
```

Array-based Stack in Java

```
public class ArrayStack
    implements Stack {
  // holds the stack elements
  private Object S[];
  // index to top element
  private int top = -1;
  // constructor
  public ArrayStack(int capacity) {
     S = new Object[capacity]);
```

```
public Object pop()
    throws EmptyStackException {
  if isEmpty()
    throw new EmptyStackException
       ("Empty stack: cannot pop");
  Object temp = S[top];
  // facilitates garbage collection
  S[top] = null;
  top = top - 1;
  return temp;
```