
Computer Networks Lab 9a

A Message Server and Client

Purpose:
To introduce the Socket class and the ServerSocket class in some simple Java programs.

Overview:
One of the Java classes for connecting a client application to a port on a remote computer is the

Socket class. Read about it in JavaDocs at:
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html.

On the server side of things, the Java class to listen to a port and respond to requests is the
ServerSocket class. Read about it in JavaDocs at:
http://java.sun.com/j2se/1.5.0/docs/api/java/net/ServerSocket.html.

Procedures:
1.Read about Socket and ServerSocket in JavaDocs.

2.Open Eclipse. Start a new Project called Lab9 and a package called lab9.

3.Create a class with a main method, and call it SocketTest1. Type in the following program, or
adapt it to create your own program that opens a Socket to a time-of-day server. Run the program
to verify that it connects properly.

package lab9;
import java.io.*;
import java.net.*;
import java.util.*;

public class SocketTest1 {
/**
 * Open a socket connection to the NIST Daytime server
 * in Boulder Colorado and print out the text that the server sends.
 */
public static void main(String[] args) throws IOException {

try {
Socket sock = new Socket("time-A.timefreq.bldrdoc.gov", 13);
try {

InputStream inStream = sock.getInputStream();
inStream = new BufferedInputStream(inStream);
StringBuffer time = new StringBuffer();

 int c;

 while ((c = inStream.read()) != -1) time.append((char) c);

 String timeString = time.toString();

 System.out.println(timeString);
}
finally {

sock.close();
}

}
catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

--

1.Next, you will create your own time of day server, using the ServerSocket class. Create a
separate class with a main method called MyTimeServer.

2.Pick out a port number in the range of 10001-19999 as the port for your server and use that
port when constructing the ServerSocket.

3.Add a while block to run for a count of 3 times. [Note: This seems easier than running forever
because it is difficult to stop the server process from within Eclipse.] You can modify the count
during debugging.

4.Here is some help you get your server running. Inside the while loop put code such as this:

Socket client = serverSocket.accept();

Writer out = new OutputStreamWriter(client.getOutputStream(), "UTF-8");

out.write(new java.util.Date().toString()); // Date string gets written to client

pout.close();

client.close();

5.Add exception handling where needed.

6.Run your time server and try using telnet to connect to the port, for example:

telnet 127.0.0.1 10001 // use your port number

You may have to repeat three times to cause the server to exit.

7.Now modify your client, SocketTest, to connect to your server.

8.Optional:

1.Improve the quality of information returned by your server by sending back multiple lines
of text including a message-of-the-day or inspiring quote.

2.Improve the client by putting it in a user interface that asks the user for a host name or
number and a port number. Display the results in the user interface.

3.Move MyTimerServer to a neighboring computer and run it from there. Then test it from
your computer using the client.

9. Submit your code to the class directory.

	Computer Networks Lab 9a
	A Message Server and Client
	Purpose:
	Overview:

